top of page










Vascular performance of woody plants in a temperate rain forest: lianas suffer higher levels of freeze–thaw embolism than associated trees

Journal Article

Jimenez-Castillo M; Lusk C


Functional Ecology



The success of lianas in tropical rain forests has been linked to their wide xylem vessels that confer much higher hydraulic conductivity than tropical trees. In contrast the poorer representation of lianas in temperate forests and high elevations might reflect lower competitiveness there because of the vulnerability of high-performance xylem to freeze–thaw embolism. Nevertheless the empirical evidence that support this idea is surprisingly scarce.\nWe assessed this hypothesis comparing the hydraulic performance of five lianas and nine trees coexisting in cold weather by measuring wood traits hydraulic conductivity xylem embolism and root pressures.\nVessel diameters of lianas were on average twice those of trees (51·3 vs. 23·2 µm) resulting in an 18-fold difference in mean specific hydraulic conductivity (15·5 vs. 1·05 kg s-1 m-1 MPa-1). Lianas on average suffered higher levels of freeze–thaw embolism than trees (29·9 vs. 12·8%) reducing their potential hydraulically supported competitive advantage; however partially embolized lianas still had greater water transport capacity than trees.\nSpecific hydraulic conductivity (Ks) was well correlated with vessel size in lianas but not in trees; however plants with big vessels were more vulnerable to freeze embolism. Although all species of lianas developed root pressures and these tended to be higher than trees root pressure were insufficient to repair embolism in plants > c. 7 m tall. The magnitudes of root pressure were well correlated with vessel size in lianas but this relationship was not observed in trees.\nSynthesis: Our results show empirical evidence that hydraulic performance of temperate lianas exceed the performance of coexisting trees in similar magnitude than its tropical counterparts. Nevertheless this hydraulic advantage is reduced as a consequence of freeze embolism. Temperate lianas appear to employ a bet-hedging strategy entailing significant embolism in winter but likely enabling rapid carbon gain during frost-free periods. Loss of winter carbon gain opportunities because of embolism may explain the low success of lianas in temperate rain forest. However predicted future climatic scenarios could are likely to increase liana abundance in mid-latitudes and allow lianas to expand their ranges towards higher latitudes and elevations.


bottom of page